SIM-ONE

Paper2Agent Integration Guide

SIM-ONE Framework for Autonomous AI Governance

This guide explains how Paper2Agent and other autonomous AI systems can discover and use SIM-ONE’s cognitive governance protocols to self-govern their outputs and ensure compliance with the Five Laws of Cognitive Governance.


Table of Contents


Quick Start

1. Validate Any AI Response (One Command)

# Validate a response against the Five Laws
echo "The Earth is round based on scientific evidence" | \
  python code/tools/run_five_laws_validator.py --format summary

Output:

================================================================================
Five Laws Cognitive Governance Validation Report
================================================================================

Overall Compliance: 82.5%
Status: PASS

Individual Law Scores:
  1. Architectural Intelligence:    75.0%
  2. Cognitive Governance:          80.0%
  3. Truth Foundation:              95.0%
  4. Energy Stewardship:            72.0%
  5. Deterministic Reliability:     85.0%

✓ Strengths (2):
  • Solid grounding in truth principles
  • Consistent and reliable outputs

→ Recommendations (1):
  • Use multiple specialized protocols in coordination
================================================================================

2. Programmatic Integration

import subprocess
import json

def validate_response(ai_response):
    """Validate AI response against Five Laws"""
    result = subprocess.run(
        ["python", "code/tools/run_five_laws_validator.py", "--text", ai_response],
        capture_output=True,
        text=True
    )

    return json.loads(result.stdout)

# Example usage
response = "Climate change is real based on overwhelming scientific consensus"
validation = validate_response(response)

if validation["pass_fail_status"] == "PASS":
    print(f"✅ Response is governed (Score: {validation['scores']['overall_compliance']:.1f}%)")
else:
    print(f"❌ Response needs refinement")
    for rec in validation["recommendations"]:
        print(f"  • {rec}")

Five Laws Governance

The Five Laws of Cognitive Governance

SIM-ONE’s governance framework is built on five fundamental principles:

  1. Architectural Intelligence - Intelligence emerges from coordination and governance, not from model size or brute force
  2. Cognitive Governance - Every cognitive process must be governed by specialized protocols
  3. Truth Foundation - All reasoning must be grounded in absolute truth principles, not probabilistic drift
  4. Energy Stewardship - Computational resources are finite and must be stewarded responsibly
  5. Deterministic Reliability - Governed systems must produce consistent, predictable, verifiable outcomes

Why This Matters for Paper2Agent

Traditional AI systems generate outputs without governance constraints, leading to:

SIM-ONE’s Five Laws governance enables Paper2Agent to:


Tool Discovery

Finding Available Tools

Paper2Agent can discover all SIM-ONE tools via the tools manifest:

# Read the tools manifest
cat code/tools/tools_manifest.json

Manifest Structure:

{
  "governance_tools": {
    "five_laws_validator": {
      "name": "Five Laws Cognitive Governance Validator",
      "wrapper": "run_five_laws_validator.py",
      "category": "governance",
      "priority": "highest",
      "input": {...},
      "output": {...},
      "use_cases": [...]
    }
  },
  "protocol_tools": {
    "REP": {...},
    "ESL": {...},
    "VVP": {...}
  }
}

Tool Naming Convention

All SIM-ONE tool wrappers follow a consistent pattern:


Available Tools

1. Five Laws Validator ⭐ (Highest Priority)

Purpose: Validate any AI-generated text against all Five Laws

Usage:

# From command line
python run_five_laws_validator.py --text "Response to validate"

# From file
python run_five_laws_validator.py --file response.txt

# From stdin (for piping)
echo "Response" | python run_five_laws_validator.py

# With strictness control
python run_five_laws_validator.py --text "..." --strictness strict

Input:

Output (JSON):

{
  "scores": {
    "law1_architectural_intelligence": 85.5,
    "law2_cognitive_governance": 72.3,
    "law3_truth_foundation": 90.1,
    "law4_energy_stewardship": 68.7,
    "law5_deterministic_reliability": 78.2,
    "overall_compliance": 79.8
  },
  "pass_fail_status": "PASS",
  "violations": ["Specific violations listed here"],
  "recommendations": ["Actionable recommendations"],
  "strengths": ["Identified strengths"]
}

Exit Codes:


2. REP - Reasoning & Explanation Protocol

Purpose: Advanced multi-modal reasoning (deductive, inductive, abductive, analogical, causal)

Usage:

# Deductive reasoning
python run_rep_tool.py --reasoning-type deductive \
  --facts "Socrates is a man" "All men are mortal" \
  --rules '[["Socrates is a man", "All men are mortal"], "Socrates is mortal"]'

# From JSON file
python run_rep_tool.py --file reasoning_input.json

Input (JSON):

{
  "reasoning_type": "deductive",
  "facts": ["fact1", "fact2"],
  "rules": [[["premise1"], "conclusion"]]
}

Output:

{
  "reasoning_type": "deductive",
  "conclusions": ["Socrates is mortal"],
  "confidence_scores": {"Socrates is mortal": 0.95},
  "reasoning_chain": [...],
  "explanation": "Deductive inference: ..."
}

3. ESL - Emotional State Layer

Purpose: Multi-dimensional emotion detection and analysis

Usage:

# Analyze emotional content
python run_esl_tool.py --text "I'm absolutely thrilled about this!"

# Summary format
python run_esl_tool.py --text "..." --format summary

Output:

{
  "emotional_state": "joy",
  "valence": "positive",
  "intensity": 0.9,
  "confidence": 0.92,
  "detected_emotions": [
    {
      "emotion": "joy",
      "intensity": 0.9,
      "dimension": "primary",
      "valence": "positive"
    }
  ]
}

4. VVP - Validation & Verification

Purpose: Input validation and logical structure verification

Usage:

# Validate rule structures
python run_vvp_tool.py --json '{"rules": [[["a"], "b"]]}'

Output:

{
  "validation_status": "success",
  "reason": "Input validation passed: 1 rules checked"
}

Example Scenarios

Scenario 1: Paper2Agent Self-Governance

Goal: Validate own responses before returning to user

#!/usr/bin/env python3
"""
Paper2Agent with Five Laws Self-Governance
"""
import subprocess
import json

def generate_response(user_query):
    """Generate response using your AI model"""
    # Your response generation logic
    return "Generated response based on query"

def validate_with_five_laws(response):
    """Validate response against Five Laws"""
    result = subprocess.run(
        ["python", "code/tools/run_five_laws_validator.py",
         "--text", response, "--strictness", "moderate"],
        capture_output=True,
        text=True
    )
    return json.loads(result.stdout)

def refine_response(original_response, recommendations):
    """Refine response based on recommendations"""
    # Your refinement logic based on recommendations
    return f"Refined: {original_response}"

def governed_response_pipeline(user_query, max_iterations=3):
    """Generate and validate response with governance"""

    for iteration in range(max_iterations):
        # Generate response
        response = generate_response(user_query)

        # Validate against Five Laws
        validation = validate_with_five_laws(response)

        # Check if compliant
        if validation["pass_fail_status"] == "PASS":
            print(f"✅ Governed response (Score: {validation['scores']['overall_compliance']:.1f}%)")
            return response

        # If not, refine based on recommendations
        print(f"⚠️  Iteration {iteration+1}: Refining based on {len(validation['recommendations'])} recommendations")
        response = refine_response(response, validation["recommendations"])

    # After max iterations, return best attempt with warning
    print("⚠️  Warning: Could not achieve PASS status within max iterations")
    return response

# Usage
if __name__ == "__main__":
    query = "Explain climate change"
    final_response = governed_response_pipeline(query)
    print(f"\nFinal Response: {final_response}")

Scenario 2: Multi-Agent Validation

Goal: One agent validates another agent’s output

#!/bin/bash

# Agent A generates response
agent_a_output=$(curl -s http://agent-a/generate?q="What is AI?")

# Agent B (Paper2Agent) validates using Five Laws
validation=$(echo "$agent_a_output" | python code/tools/run_five_laws_validator.py)

status=$(echo "$validation" | jq -r '.pass_fail_status')

if [ "$status" == "PASS" ]; then
    echo "✅ Agent A's response is governed"
    echo "$agent_a_output"
else
    echo "❌ Agent A's response failed governance"
    echo "$validation" | jq -r '.violations[]'

    # Send back for refinement
    curl -X POST http://agent-a/refine \
      -d "{\"original\": \"$agent_a_output\", \"recommendations\": $(echo "$validation" | jq '.recommendations')}"
fi

Scenario 3: Governed Content Generation

Goal: Generate responses with built-in Five Laws compliance

def generate_governed_response(prompt, target_compliance=85.0):
    """
    Generate response that meets Five Laws compliance threshold
    """
    import subprocess
    import json

    attempts = []

    for attempt in range(5):
        # Generate response (your logic here)
        response = your_llm_generate(prompt)

        # Validate
        result = subprocess.run(
            ["python", "code/tools/run_five_laws_validator.py", "--text", response],
            capture_output=True, text=True
        )
        validation = json.loads(result.stdout)

        compliance_score = validation["scores"]["overall_compliance"]
        attempts.append((response, compliance_score, validation))

        # Check if we met threshold
        if compliance_score >= target_compliance:
            print(f"✅ Generated governed response (Score: {compliance_score:.1f}%)")
            return response

        # Adjust prompt based on violations
        prompt = adjust_prompt_for_governance(prompt, validation["recommendations"])

    # Return best attempt
    best_response, best_score, best_validation = max(attempts, key=lambda x: x[1])
    print(f"⚠️  Best achieved: {best_score:.1f}% (target was {target_compliance}%)")
    return best_response

Scenario 4: Continuous Integration / Quality Assurance

Goal: Validate AI-generated content in CI/CD pipeline

# .github/workflows/ai_governance.yml
name: AI Content Governance Check

on: [push, pull_request]

jobs:
  validate:
    runs-on: ubuntu-latest

    steps:
      - uses: actions/checkout@v2

      - name: Set up Python
        uses: actions/setup-python@v2
        with:
          python-version: '3.9'

      - name: Install dependencies
        run: pip install -r code/requirements.txt

      - name: Validate AI-generated content
        run: |
          for file in ai_generated_content/*.txt; do
            echo "Validating $file..."
            python code/tools/run_five_laws_validator.py --file "$file" --strictness strict

            if [ $? -ne 0 ]; then
              echo "❌ $file failed Five Laws governance"
              exit 1
            fi
          done

          echo "✅ All AI-generated content passes Five Laws governance"

Protocol Composition

Tools can be chained together for complex governed workflows:

Example 1: Reason → Validate → Govern

# Chain reasoning, validation, and governance
python run_rep_tool.py --json '{"reasoning_type": "deductive", ...}' | \
  python run_vvp_tool.py | \
  python run_five_laws_validator.py --format summary

Example 2: Emotional Analysis + Governance

# Analyze emotion, then validate governance
python run_esl_tool.py --text "User message" > emotion_analysis.json

# Use emotion context in governance validation
python run_five_laws_validator.py --text "AI response" \
  --context "$(cat emotion_analysis.json)"

Example 3: Multi-Step Governed Pipeline

def governed_pipeline(user_input):
    """
    Complete governed processing pipeline
    """
    # Step 1: Analyze user emotion
    emotion = run_tool("run_esl_tool.py", {"text": user_input})

    # Step 2: Generate response with emotional awareness
    response = generate_empathetic_response(user_input, emotion)

    # Step 3: Apply reasoning validation
    reasoning = run_tool("run_rep_tool.py", {
        "reasoning_type": "deductive",
        "context": response
    })

    # Step 4: Validate structure
    validation = run_tool("run_vvp_tool.py", {"data": reasoning})

    # Step 5: Five Laws governance check
    governance = run_tool("run_five_laws_validator.py", {"text": response})

    if governance["pass_fail_status"] == "PASS":
        return response
    else:
        return refine_and_retry(response, governance["recommendations"])

API Reference

Five Laws Validator

Command:

python run_five_laws_validator.py [OPTIONS]

Options: | Flag | Type | Description | Default | |——|——|————-|———| | --text, -t | string | Text to validate | - | | --file, -f | path | File containing text | - | | --strictness, -s | choice | lenient|moderate|strict | moderate | | --context, -c | json | Additional context | - | | --format | choice | json|compact|summary | json | | --verbose, -v | flag | Enable verbose logging | false |

Exit Codes:


REP - Reasoning Protocol

Command:

python run_rep_tool.py [OPTIONS]

Options: | Flag | Type | Description | |——|——|————-| | --file, -f | path | JSON file with reasoning input | | --json, -j | json | JSON string with reasoning input | | --reasoning-type | choice | deductive|inductive|abductive|analogical|causal | | --facts | list | List of facts | | --rules | json | JSON string of rules |


ESL - Emotional State Layer

Command:

python run_esl_tool.py [OPTIONS]

Options: | Flag | Type | Description | Default | |——|——|————-|———| | --text, -t | string | Text to analyze | - | | --file, -f | path | File containing text | - | | --format | choice | json|summary | json |


VVP - Validation Protocol

Command:

python run_vvp_tool.py [OPTIONS]

Options: | Flag | Type | Description | |——|——|————-| | --file, -f | path | JSON file with validation input | | --json, -j | json | JSON string with validation input |


Integration Patterns

Pattern 1: Pre-Response Validation

def send_response_with_governance(user_query):
    """Always validate before responding"""
    response = generate_response(user_query)

    validation = validate_five_laws(response)

    if validation["pass_fail_status"] != "PASS":
        response = apply_governance_fixes(response, validation)

    return response

Pattern 2: Adaptive Strictness

def adaptive_governance(response, context):
    """Adjust strictness based on context"""
    if context.get("domain") == "scientific":
        strictness = "strict"
    elif context.get("domain") == "creative":
        strictness = "lenient"
    else:
        strictness = "moderate"

    return validate_five_laws(response, strictness)

Pattern 3: Iterative Refinement

def iteratively_refine(initial_response, max_iterations=3):
    """Keep refining until governance passes"""
    response = initial_response

    for i in range(max_iterations):
        validation = validate_five_laws(response)

        if validation["pass_fail_status"] == "PASS":
            return response

        # Refine based on specific law violations
        response = refine_for_laws(response, validation)

    return response  # Best attempt

Best Practices

1. Always Validate Critical Outputs

For responses involving facts, decisions, or user-facing content, always run Five Laws validation:

if response_is_critical(response):
    validation = validate_five_laws(response, strictness="strict")
    if validation["pass_fail_status"] != "PASS":
        log_governance_failure(validation)
        response = fallback_response()

2. Use Appropriate Strictness

3. Log Governance Metrics

Track compliance over time:

governance_metrics = {
    "timestamp": time.time(),
    "compliance_score": validation["scores"]["overall_compliance"],
    "status": validation["pass_fail_status"],
    "violations": len(validation["violations"])
}

log_to_analytics(governance_metrics)

4. Provide User Transparency

Optionally show governance scores to users:

if show_governance_info:
    print(f"[Governed Response - Compliance: {score}%]")
    print(response)

Troubleshooting

Issue: Tool not found

Solution:

# Ensure you're in the correct directory
cd code/tools

# Or use full path
python /full/path/to/code/tools/run_five_laws_validator.py --text "..."

Issue: Import errors

Solution:

# Install dependencies
cd code
pip install -r requirements.txt

# Verify imports
python -c "from tools.lib.five_laws_evaluator import evaluate_text; print('OK')"

Issue: Low compliance scores

Solution: Check specific law violations:

python run_five_laws_validator.py --text "..." --format summary

Review recommendations and refine response accordingly.


Support & Resources


Next Steps

  1. Try the Five Laws Validator with your AI system’s responses
  2. Review the tools manifest (code/tools/tools_manifest.json) for all available tools
  3. Experiment with protocol composition to build governed workflows
  4. Integrate governance checks into your AI pipeline
  5. Monitor compliance metrics to track governance effectiveness

Welcome to governed cognition. 🛡️

SIM-ONE Framework - Cognitive Governance for Autonomous AI Systems