SIM-ONE Framework for Autonomous AI Governance
This guide explains how Paper2Agent and other autonomous AI systems can discover and use SIM-ONE’s cognitive governance protocols to self-govern their outputs and ensure compliance with the Five Laws of Cognitive Governance.
# Validate a response against the Five Laws
echo "The Earth is round based on scientific evidence" | \
python code/tools/run_five_laws_validator.py --format summary
Output:
================================================================================
Five Laws Cognitive Governance Validation Report
================================================================================
Overall Compliance: 82.5%
Status: PASS
Individual Law Scores:
1. Architectural Intelligence: 75.0%
2. Cognitive Governance: 80.0%
3. Truth Foundation: 95.0%
4. Energy Stewardship: 72.0%
5. Deterministic Reliability: 85.0%
✓ Strengths (2):
• Solid grounding in truth principles
• Consistent and reliable outputs
→ Recommendations (1):
• Use multiple specialized protocols in coordination
================================================================================
import subprocess
import json
def validate_response(ai_response):
"""Validate AI response against Five Laws"""
result = subprocess.run(
["python", "code/tools/run_five_laws_validator.py", "--text", ai_response],
capture_output=True,
text=True
)
return json.loads(result.stdout)
# Example usage
response = "Climate change is real based on overwhelming scientific consensus"
validation = validate_response(response)
if validation["pass_fail_status"] == "PASS":
print(f"✅ Response is governed (Score: {validation['scores']['overall_compliance']:.1f}%)")
else:
print(f"❌ Response needs refinement")
for rec in validation["recommendations"]:
print(f" • {rec}")
SIM-ONE’s governance framework is built on five fundamental principles:
Traditional AI systems generate outputs without governance constraints, leading to:
SIM-ONE’s Five Laws governance enables Paper2Agent to:
Paper2Agent can discover all SIM-ONE tools via the tools manifest:
# Read the tools manifest
cat code/tools/tools_manifest.json
Manifest Structure:
{
"governance_tools": {
"five_laws_validator": {
"name": "Five Laws Cognitive Governance Validator",
"wrapper": "run_five_laws_validator.py",
"category": "governance",
"priority": "highest",
"input": {...},
"output": {...},
"use_cases": [...]
}
},
"protocol_tools": {
"REP": {...},
"ESL": {...},
"VVP": {...}
}
}
All SIM-ONE tool wrappers follow a consistent pattern:
code/tools/run_*_tool.py# MCP_TOOL_ENTRYPOINT commentPurpose: Validate any AI-generated text against all Five Laws
Usage:
# From command line
python run_five_laws_validator.py --text "Response to validate"
# From file
python run_five_laws_validator.py --file response.txt
# From stdin (for piping)
echo "Response" | python run_five_laws_validator.py
# With strictness control
python run_five_laws_validator.py --text "..." --strictness strict
Input:
Strictness level: lenient |
moderate |
strict (optional) |
Output (JSON):
{
"scores": {
"law1_architectural_intelligence": 85.5,
"law2_cognitive_governance": 72.3,
"law3_truth_foundation": 90.1,
"law4_energy_stewardship": 68.7,
"law5_deterministic_reliability": 78.2,
"overall_compliance": 79.8
},
"pass_fail_status": "PASS",
"violations": ["Specific violations listed here"],
"recommendations": ["Actionable recommendations"],
"strengths": ["Identified strengths"]
}
Exit Codes:
0 = PASS or CONDITIONAL1 = FAIL2 = ERRORPurpose: Advanced multi-modal reasoning (deductive, inductive, abductive, analogical, causal)
Usage:
# Deductive reasoning
python run_rep_tool.py --reasoning-type deductive \
--facts "Socrates is a man" "All men are mortal" \
--rules '[["Socrates is a man", "All men are mortal"], "Socrates is mortal"]'
# From JSON file
python run_rep_tool.py --file reasoning_input.json
Input (JSON):
{
"reasoning_type": "deductive",
"facts": ["fact1", "fact2"],
"rules": [[["premise1"], "conclusion"]]
}
Output:
{
"reasoning_type": "deductive",
"conclusions": ["Socrates is mortal"],
"confidence_scores": {"Socrates is mortal": 0.95},
"reasoning_chain": [...],
"explanation": "Deductive inference: ..."
}
Purpose: Multi-dimensional emotion detection and analysis
Usage:
# Analyze emotional content
python run_esl_tool.py --text "I'm absolutely thrilled about this!"
# Summary format
python run_esl_tool.py --text "..." --format summary
Output:
{
"emotional_state": "joy",
"valence": "positive",
"intensity": 0.9,
"confidence": 0.92,
"detected_emotions": [
{
"emotion": "joy",
"intensity": 0.9,
"dimension": "primary",
"valence": "positive"
}
]
}
Purpose: Input validation and logical structure verification
Usage:
# Validate rule structures
python run_vvp_tool.py --json '{"rules": [[["a"], "b"]]}'
Output:
{
"validation_status": "success",
"reason": "Input validation passed: 1 rules checked"
}
Goal: Validate own responses before returning to user
#!/usr/bin/env python3
"""
Paper2Agent with Five Laws Self-Governance
"""
import subprocess
import json
def generate_response(user_query):
"""Generate response using your AI model"""
# Your response generation logic
return "Generated response based on query"
def validate_with_five_laws(response):
"""Validate response against Five Laws"""
result = subprocess.run(
["python", "code/tools/run_five_laws_validator.py",
"--text", response, "--strictness", "moderate"],
capture_output=True,
text=True
)
return json.loads(result.stdout)
def refine_response(original_response, recommendations):
"""Refine response based on recommendations"""
# Your refinement logic based on recommendations
return f"Refined: {original_response}"
def governed_response_pipeline(user_query, max_iterations=3):
"""Generate and validate response with governance"""
for iteration in range(max_iterations):
# Generate response
response = generate_response(user_query)
# Validate against Five Laws
validation = validate_with_five_laws(response)
# Check if compliant
if validation["pass_fail_status"] == "PASS":
print(f"✅ Governed response (Score: {validation['scores']['overall_compliance']:.1f}%)")
return response
# If not, refine based on recommendations
print(f"⚠️ Iteration {iteration+1}: Refining based on {len(validation['recommendations'])} recommendations")
response = refine_response(response, validation["recommendations"])
# After max iterations, return best attempt with warning
print("⚠️ Warning: Could not achieve PASS status within max iterations")
return response
# Usage
if __name__ == "__main__":
query = "Explain climate change"
final_response = governed_response_pipeline(query)
print(f"\nFinal Response: {final_response}")
Goal: One agent validates another agent’s output
#!/bin/bash
# Agent A generates response
agent_a_output=$(curl -s http://agent-a/generate?q="What is AI?")
# Agent B (Paper2Agent) validates using Five Laws
validation=$(echo "$agent_a_output" | python code/tools/run_five_laws_validator.py)
status=$(echo "$validation" | jq -r '.pass_fail_status')
if [ "$status" == "PASS" ]; then
echo "✅ Agent A's response is governed"
echo "$agent_a_output"
else
echo "❌ Agent A's response failed governance"
echo "$validation" | jq -r '.violations[]'
# Send back for refinement
curl -X POST http://agent-a/refine \
-d "{\"original\": \"$agent_a_output\", \"recommendations\": $(echo "$validation" | jq '.recommendations')}"
fi
Goal: Generate responses with built-in Five Laws compliance
def generate_governed_response(prompt, target_compliance=85.0):
"""
Generate response that meets Five Laws compliance threshold
"""
import subprocess
import json
attempts = []
for attempt in range(5):
# Generate response (your logic here)
response = your_llm_generate(prompt)
# Validate
result = subprocess.run(
["python", "code/tools/run_five_laws_validator.py", "--text", response],
capture_output=True, text=True
)
validation = json.loads(result.stdout)
compliance_score = validation["scores"]["overall_compliance"]
attempts.append((response, compliance_score, validation))
# Check if we met threshold
if compliance_score >= target_compliance:
print(f"✅ Generated governed response (Score: {compliance_score:.1f}%)")
return response
# Adjust prompt based on violations
prompt = adjust_prompt_for_governance(prompt, validation["recommendations"])
# Return best attempt
best_response, best_score, best_validation = max(attempts, key=lambda x: x[1])
print(f"⚠️ Best achieved: {best_score:.1f}% (target was {target_compliance}%)")
return best_response
Goal: Validate AI-generated content in CI/CD pipeline
# .github/workflows/ai_governance.yml
name: AI Content Governance Check
on: [push, pull_request]
jobs:
validate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.9'
- name: Install dependencies
run: pip install -r code/requirements.txt
- name: Validate AI-generated content
run: |
for file in ai_generated_content/*.txt; do
echo "Validating $file..."
python code/tools/run_five_laws_validator.py --file "$file" --strictness strict
if [ $? -ne 0 ]; then
echo "❌ $file failed Five Laws governance"
exit 1
fi
done
echo "✅ All AI-generated content passes Five Laws governance"
Tools can be chained together for complex governed workflows:
# Chain reasoning, validation, and governance
python run_rep_tool.py --json '{"reasoning_type": "deductive", ...}' | \
python run_vvp_tool.py | \
python run_five_laws_validator.py --format summary
# Analyze emotion, then validate governance
python run_esl_tool.py --text "User message" > emotion_analysis.json
# Use emotion context in governance validation
python run_five_laws_validator.py --text "AI response" \
--context "$(cat emotion_analysis.json)"
def governed_pipeline(user_input):
"""
Complete governed processing pipeline
"""
# Step 1: Analyze user emotion
emotion = run_tool("run_esl_tool.py", {"text": user_input})
# Step 2: Generate response with emotional awareness
response = generate_empathetic_response(user_input, emotion)
# Step 3: Apply reasoning validation
reasoning = run_tool("run_rep_tool.py", {
"reasoning_type": "deductive",
"context": response
})
# Step 4: Validate structure
validation = run_tool("run_vvp_tool.py", {"data": reasoning})
# Step 5: Five Laws governance check
governance = run_tool("run_five_laws_validator.py", {"text": response})
if governance["pass_fail_status"] == "PASS":
return response
else:
return refine_and_retry(response, governance["recommendations"])
Command:
python run_five_laws_validator.py [OPTIONS]
Options:
| Flag | Type | Description | Default |
|——|——|————-|———|
| --text, -t | string | Text to validate | - |
| --file, -f | path | File containing text | - |
| --strictness, -s | choice | lenient|moderate|strict | moderate |
| --context, -c | json | Additional context | - |
| --format | choice | json|compact|summary | json |
| --verbose, -v | flag | Enable verbose logging | false |
Exit Codes:
0: PASS or CONDITIONAL1: FAIL2: ERRORCommand:
python run_rep_tool.py [OPTIONS]
Options:
| Flag | Type | Description |
|——|——|————-|
| --file, -f | path | JSON file with reasoning input |
| --json, -j | json | JSON string with reasoning input |
| --reasoning-type | choice | deductive|inductive|abductive|analogical|causal |
| --facts | list | List of facts |
| --rules | json | JSON string of rules |
Command:
python run_esl_tool.py [OPTIONS]
Options:
| Flag | Type | Description | Default |
|——|——|————-|———|
| --text, -t | string | Text to analyze | - |
| --file, -f | path | File containing text | - |
| --format | choice | json|summary | json |
Command:
python run_vvp_tool.py [OPTIONS]
Options:
| Flag | Type | Description |
|——|——|————-|
| --file, -f | path | JSON file with validation input |
| --json, -j | json | JSON string with validation input |
def send_response_with_governance(user_query):
"""Always validate before responding"""
response = generate_response(user_query)
validation = validate_five_laws(response)
if validation["pass_fail_status"] != "PASS":
response = apply_governance_fixes(response, validation)
return response
def adaptive_governance(response, context):
"""Adjust strictness based on context"""
if context.get("domain") == "scientific":
strictness = "strict"
elif context.get("domain") == "creative":
strictness = "lenient"
else:
strictness = "moderate"
return validate_five_laws(response, strictness)
def iteratively_refine(initial_response, max_iterations=3):
"""Keep refining until governance passes"""
response = initial_response
for i in range(max_iterations):
validation = validate_five_laws(response)
if validation["pass_fail_status"] == "PASS":
return response
# Refine based on specific law violations
response = refine_for_laws(response, validation)
return response # Best attempt
For responses involving facts, decisions, or user-facing content, always run Five Laws validation:
if response_is_critical(response):
validation = validate_five_laws(response, strictness="strict")
if validation["pass_fail_status"] != "PASS":
log_governance_failure(validation)
response = fallback_response()
Track compliance over time:
governance_metrics = {
"timestamp": time.time(),
"compliance_score": validation["scores"]["overall_compliance"],
"status": validation["pass_fail_status"],
"violations": len(validation["violations"])
}
log_to_analytics(governance_metrics)
Optionally show governance scores to users:
if show_governance_info:
print(f"[Governed Response - Compliance: {score}%]")
print(response)
Solution:
# Ensure you're in the correct directory
cd code/tools
# Or use full path
python /full/path/to/code/tools/run_five_laws_validator.py --text "..."
Solution:
# Install dependencies
cd code
pip install -r requirements.txt
# Verify imports
python -c "from tools.lib.five_laws_evaluator import evaluate_text; print('OK')"
Solution: Check specific law violations:
python run_five_laws_validator.py --text "..." --format summary
Review recommendations and refine response accordingly.
code/tools/tools_manifest.json) for all available toolsWelcome to governed cognition. 🛡️
SIM-ONE Framework - Cognitive Governance for Autonomous AI Systems