SIM-ONE

SIM-ONE RAG Enhancement Analysis

Current State Assessment

Existing RAG Architecture

Your SIM-ONE Framework has a sophisticated RAG system that aligns perfectly with the Five Laws:

Current Components:

Current Limitations:

Recommendation 1: Priority Transformer Integration

Approach: Lightweight Semantic Encoder Protocol

Instead of bloating the MVLM, create a dedicated Semantic Encoding Protocol (SEP) within your framework:

# New Protocol: code/mcp_server/protocols/sep/semantic_encoding_protocol.py
class SemanticEncodingProtocol(BaseProtocol):
    """
    Lightweight transformer encoder for semantic embeddings.
    Maintains SIM-ONE principles by keeping encoding separate from generation.
    """
    
    def __init__(self):
        # Use a small, efficient transformer encoder
        # Options: sentence-transformers/all-MiniLM-L6-v2 (22MB)
        #          sentence-transformers/all-distilroberta-v1 (82MB)
        self.encoder = self._load_lightweight_encoder()
        self.cache = EmbeddingCache(max_size=10000)
    
    def encode_text(self, text: str) -> np.ndarray:
        """Generate semantic embeddings while respecting energy stewardship."""
        # Check cache first (Law 4: Energy Stewardship)
        cache_key = hashlib.md5(text.encode()).hexdigest()
        if cache_key in self.cache:
            return self.cache[cache_key]
        
        # Generate embedding
        embedding = self.encoder.encode(text)
        self.cache[cache_key] = embedding
        
        return embedding

Benefits:

Recommendation 2: Strategic Vector Database Sources

High-Value Knowledge Bases for SIM-ONE

1. Technical Documentation Corpus

# code/mcp_server/rag_sources/technical_knowledge.py
TECHNICAL_SOURCES = {
    'ai_research': {
        'papers': 'arXiv AI/ML papers (2020-2024)',
        'size': '~500K documents',
        'update_frequency': 'weekly',
        'embedding_model': 'scientific-text-encoder'
    },
    'software_engineering': {
        'docs': 'Python, JavaScript, system design patterns',
        'size': '~100K documents', 
        'relevance': 'High for protocol development'
    }
}

2. Philosophical and Ethical Knowledge

PHILOSOPHICAL_SOURCES = {
    'ethics_corpus': {
        'content': 'Philosophical texts on AI ethics, governance',
        'relevance': 'Critical for Law 3 (Truth Foundation)',
        'sources': ['Stanford Encyclopedia', 'Ethics papers', 'Governance frameworks']
    },
    'cognitive_science': {
        'content': 'Research on cognition, decision-making, reasoning',
        'relevance': 'Supports cognitive governance principles'
    }
}

3. Domain-Specific Knowledge Bases

DOMAIN_SOURCES = {
    'business_intelligence': {
        'content': 'Business processes, decision frameworks, strategy',
        'size': '~200K documents',
        'use_case': 'Enterprise protocol applications'
    },
    'scientific_knowledge': {
        'content': 'Peer-reviewed research across disciplines',
        'quality': 'High (peer-reviewed only)',
        'relevance': 'Truth validation and fact-checking'
    }
}

Recommendation 3: Enhanced RAG Architecture

Multi-Tier RAG System

# code/mcp_server/rag_manager/enhanced_rag_manager.py
class EnhancedRAGManager:
    """
    Multi-tier RAG system respecting SIM-ONE architectural principles.
    """
    
    def __init__(self):
        self.tiers = {
            'memory': MemoryRAGTier(),      # Personal/session memory
            'knowledge': KnowledgeRAGTier(), # Curated knowledge bases  
            'web': WebRAGTier(),            # Real-time web search
            'contextual': ContextualRAGTier() # Cross-protocol context
        }
        
        self.semantic_encoder = SemanticEncodingProtocol()
        self.governance = RAGGovernanceProtocol()
    
    async def retrieve_context(self, query: str, context: Dict) -> str:
        """
        Governed retrieval respecting Five Laws.
        """
        # Law 2: Cognitive Governance - validate query
        validated_query = await self.governance.validate_query(query, context)
        
        # Law 1: Architectural Intelligence - coordinate tiers
        results = await self._coordinate_retrieval_tiers(validated_query, context)
        
        # Law 3: Truth Foundation - validate and rank results
        validated_results = await self.governance.validate_results(results)
        
        # Law 5: Deterministic Reliability - consistent formatting
        return self._format_context(validated_results)

Tier-Specific Implementations

Memory Tier Enhancement:

class MemoryRAGTier:
    """Enhanced memory retrieval with semantic understanding."""
    
    async def retrieve(self, query: str, context: Dict) -> List[Dict]:
        # Use semantic encoder for better matching
        query_embedding = self.semantic_encoder.encode_text(query)
        
        # Enhanced scoring with semantic similarity
        memories = await self.memory_manager.semantic_search(
            query_embedding, 
            context,
            scoring_factors={
                'semantic_similarity': 0.4,
                'emotional_salience': 0.2, 
                'rehearsal_count': 0.15,
                'recency': 0.15,
                'actor_relevance': 0.1
            }
        )
        
        return memories

Knowledge Tier Implementation:

class KnowledgeRAGTier:
    """Curated knowledge base retrieval."""
    
    def __init__(self):
        self.knowledge_bases = {
            'technical': TechnicalKnowledgeBase(),
            'philosophical': PhilosophicalKnowledgeBase(),
            'domain_specific': DomainKnowledgeBase()
        }
    
    async def retrieve(self, query: str, context: Dict) -> List[Dict]:
        # Determine relevant knowledge bases
        relevant_bases = self._select_knowledge_bases(query, context)
        
        # Parallel retrieval with governance
        results = await asyncio.gather(*[
            kb.search(query, context) for kb in relevant_bases
        ])
        
        return self._merge_and_rank_results(results)

Recommendation 4: Protocol-Specific RAG Enhancements

Critic Protocol RAG Enhancement

# code/mcp_server/protocols/critic/enhanced_critic_rag.py
class CriticRAGEnhancer:
    """Specialized RAG for fact-checking and validation."""
    
    async def fact_check_retrieval(self, claim: str) -> Dict:
        # Retrieve from high-authority sources
        sources = await self.rag_manager.retrieve_context(
            claim,
            context={
                'priority_sources': ['peer_reviewed', 'authoritative'],
                'fact_check_mode': True,
                'confidence_threshold': 0.8
            }
        )
        
        return {
            'supporting_evidence': sources['supporting'],
            'contradicting_evidence': sources['contradicting'],
            'confidence_score': sources['confidence'],
            'source_authority': sources['authority_scores']
        }

Ideator Protocol RAG Enhancement

# code/mcp_server/protocols/ideator/enhanced_ideator_rag.py
class IdeatorRAGEnhancer:
    """Creative and innovative context retrieval."""
    
    async def creative_context_retrieval(self, topic: str) -> Dict:
        # Retrieve diverse perspectives and creative examples
        context = await self.rag_manager.retrieve_context(
            topic,
            context={
                'diversity_mode': True,
                'creative_sources': ['innovation_cases', 'cross_domain'],
                'perspective_variety': True
            }
        )
        
        return context

Recommendation 5: Implementation Roadmap

Phase 1: Semantic Encoding Protocol (Week 1-2)

  1. Create SEP protocol structure
  2. Integrate lightweight transformer encoder
  3. Implement caching and optimization
  4. Test with existing vector search

Phase 2: Enhanced Vector Search (Week 3-4)

  1. Upgrade VectorSimilarityEngine to use SEP
  2. Implement multi-factor scoring with semantic similarity
  3. Add governance validation to search results
  4. Performance testing and optimization

Phase 3: Knowledge Base Integration (Week 5-8)

  1. Design knowledge base architecture
  2. Implement technical documentation corpus
  3. Add philosophical/ethical knowledge base
  4. Create domain-specific knowledge sources

Phase 4: Protocol-Specific Enhancements (Week 9-12)

  1. Enhance Critic protocol with fact-checking RAG
  2. Upgrade Ideator with creative context retrieval
  3. Improve Revisor with comprehensive reference checking
  4. Add cross-protocol context sharing

Phase 5: Advanced Features (Week 13-16)

  1. Implement multi-tier RAG coordination
  2. Add real-time knowledge base updates
  3. Create RAG governance and compliance monitoring
  4. Performance optimization and scaling

Technical Specifications

Lightweight Transformer Options

  1. sentence-transformers/all-MiniLM-L6-v2
    • Size: 22MB
    • Dimensions: 384
    • Speed: ~1000 sentences/second
    • Quality: Good for general semantic similarity
  2. sentence-transformers/all-distilroberta-v1
    • Size: 82MB
    • Dimensions: 768
    • Speed: ~500 sentences/second
    • Quality: Better semantic understanding
  3. Custom Lightweight Encoder
    • Train on your specific domain
    • Size: 10-50MB
    • Optimized for SIM-ONE use cases
    • Perfect alignment with framework principles

Vector Database Recommendations

  1. PostgreSQL + pgvector (Current - Good choice)
  2. Qdrant (If scaling beyond PostgreSQL)
  3. Chroma (Lightweight, good for development)
  4. Weaviate (If need advanced features)

Knowledge Base Sources

  1. arXiv Papers (AI/ML research)
  2. Semantic Scholar (Academic papers)
  3. Wikipedia (General knowledge)
  4. Technical Documentation (APIs, frameworks)
  5. Philosophical Texts (Ethics, governance)
  6. Business Knowledge (Processes, frameworks)

Alignment with Five Laws

Law 1 (Architectural Intelligence):

Law 2 (Cognitive Governance):

Law 3 (Truth Foundation):

Law 4 (Energy Stewardship):

Law 5 (Deterministic Reliability):

This enhancement maintains your architectural purity while significantly improving RAG capabilities through framework-level improvements rather than model bloat.